Classifying plane curves of a given genus with singularities in general position

Joaquim Roé (**UAB** Universitat Autónoma) j.w. Ciro Ciliberto & Rick Miranda

October 3, 2005 Birational Geometry Seminar

arxiv: 2508.01462

Plane curves of genus 0 and 1

Notation

- Tanshi $p_1, \ldots, p_n \in \mathbb{P}^2$ general points in $\mathcal{C} \left(\mathbb{P}^2 \right)^n$ Faishi $|d; m_1, \ldots, m_n| = \{ \text{Curves } C \text{ with deg } C = d, \text{ mult}_{p_i} C \geq m_i \}$
- $ightharpoonup g(d; m_1, ..., m_n) = \frac{(d-1)(d-2)}{2} \sum_{i=1}^{m_i(m_i-1)} (genus)$

Theorem (Classical)

Assume $\mathcal{L} = |d; m_1, \dots, m_n|$ contains an irreducible curve C.

- ▶ If $g(\mathcal{L}) = 0$, C is the Cremona transform of a line
- ▶ If $g(\mathcal{L}) = 1$, C is the Cremona transform of a smooth cubic

13;2,11

General points! 16; 210/ g=0 rational nodal sextices system empty Pr - Progeneral (6; 29) → Halphen penul g=1 but if pr-Pg genal 1 = 2 x cubic

Higher genus

Theorem (De Franchis 1899, Calabri-Ciliberto 2010)

Assume $\mathcal{L}=|d;m_1,\ldots,m_n|$ contains an irreducible curve C and $\dim \mathcal{L}\geq 1$. If g=2, C is the Cremona transform of either

- a nodal quartic
- a sextic with 8 nodes

Theorem

Assume the SHGH conjecture holds, and fix $g \ge 2$. Up to Cremona transform, there are finitely many numerical characters $|d; m_1, \ldots, m_n|$ for which $\mathcal{L} \ne \emptyset$ and $g(\mathcal{L}) = g$

Theorem

Assume the SHGH conjecture holds, and fix $g \ge 2$. Up to Cremona transform, there are finitely many numerical characters $|d; m_1, \ldots, m_n|$ for which $\mathcal{L} \ne \emptyset$ and $g(\mathcal{L}) = g$

- lacksquare $X_n \longrightarrow \mathbb{P}^2$ blowing up at p_1, \ldots, p_n
- Pic $X_n = \langle L, E_1, ..., E_n \rangle_{\mathbb{Z}}$, $L^2 = 1, E_i^2 = -1, L \cdot E_i = E_i \cdot E_j = 0$
- $K_n = -3L + E_1 + \cdots + E_n$
- $\mathcal{L} = |d; m_1, \dots, m_n| \cong$ $\mathbb{P}(H^0(X_n, \mathcal{O}_{X_n}(dL m_1E_1 \dots m_nE_n)))$
- ► (-1)-curve E: $E^2 = E \cdot K_n = -1$

Theorem

Assume the SHGH conjecture holds, and fix $g \ge 2$. Up to Cremona transform, there are finitely many numerical characters $|d; m_1, \ldots, m_n|$ for which $\mathcal{L} \ne \emptyset$ and $g(\mathcal{L}) = g$

 $\begin{array}{l} \blacktriangleright \; \textit{Expected dimension} \\ \; \mathsf{edim} \; \mathcal{L} := \max \left\{ \frac{d(d+3)}{2} - \sum \frac{m_i(m_i+1)}{2}, -1 \right\} \leq \dim \mathcal{L} \end{array}$

Conjecture (Segre-Harbourne-Gimigliano-Hirschowitz)

If edim $\mathcal{L} < \dim \mathcal{L}$ then there exists a (-1)-curve E in X_n with

If edim $\mathcal{L} < \dim \mathcal{L}$ then there exists a (-1)-curve E in X_n with $E \cdot \mathcal{L} < -1$.

$$P^{2k} \stackrel{\times}{\searrow} P^2$$

Theorem

Assume the SHGH conjecture holds, and fix $g \geq 2$. Up to Cremona transform, there are finitely many numerical characters $|d; m_1, \ldots, m_n|$ for which $\mathcal{L} \neq \emptyset$ and $g(\mathcal{L}) = g$

- Cremona map dominated by $X_n \iff$ automorphism of Pic X_n Standard quadratic Cremona \iff reflection $[L - E_1 - E_2 - E_3]$ $|d; \underline{m_1}, \underline{m_2}, \underline{m_3}, \underline{m_4} \dots| \stackrel{\phi}{\mapsto} |d + \delta; \underline{m_1 + \delta}, \underline{m_2 + \delta}, \underline{m_3 + \delta}, \underline{m_4} \dots|$ where $\underline{\delta} = d - m_1 - m_2 - m_3 = \underbrace{\int \cdot \left[\cdot \right]}_{CK}$
- $ightharpoonup \mathcal{CK}_n \subset \mathit{SL}_{n+1}(\mathbb{Z})$ group: generated by ϕ and \mathcal{S}_n
- ightharpoonup g, \mathcal{L}^2 , dim \mathcal{L} are preserved by \mathcal{CK}
- $m{\mathcal{L}}$ Cremona-reduced: $d \geq m_1 + m_2 + m_3$ and $m_1 \geq m_2 \geq \cdots \geq 0$

Consequences of the SHGH conjecture

- If E is an irreducible curve on X_n with $E^2 < 0$, then E is a (-1)-curve
- ▶ If F effective divisor on X_n , either nef or reduced, then
 - $h^{i}(X_{n},F)=0 \text{ for } i=1,2$
 - ightharpoonup dim $\mathcal{L}_F=\operatorname{edim}\mathcal{L}_F=F^2-g(\mathcal{L}_F)+1$
- ▶ If F effective nef divisor on X_n , then either
 - $ightharpoonup \mathcal{L}_F = \{C\}$ where C irreducible
 - $ightharpoonup \mathcal{L}_F = \{mC\}$ where C irreducible, $C^2 = 0$ and g(C) = 1
 - $ightharpoonup \mathcal{L}_F$ has no fixed component

Assume dim $\mathcal{L} \geq 0$, $g(\mathcal{L}) \geq 2$ and Cremona-reduced Then SHGH also implies:

- ▶ The general curve $C \in \mathcal{L}$ is irreducible
- The adjoint system $|C + K_n|$ has dimension $g(\mathcal{L}) 1$ and no fixed component

Cremona-minimal classification for $g \geq 2$ assuming SHGH

Assume $|C + mK_n|$ effective, $|C + (m+1)K_n|$ not, and let $\alpha = \dim(|C + mK_n|)$

$$\int z \cdot C \cdot (i) |3m; m_1, \dots, m_n| \text{ with } m \geq m_1 \geq \dots \geq m_n \geq 1; (\alpha = 0)$$

- (ii) $|3m + e; m + e, m + e, m_3, ..., m_n|$ with $m e \ge m_3 \ge ... \ge m_n \ge 1, m > e > 0; (\alpha = 0)$
- (iii) $|3m + \alpha; m + \alpha, m_2, \dots, m_n|$ with $\leftarrow \lfloor 4; 2, 4^{n-1} \rfloor$ $n \leq 1$ $m \geq m_2 \geq \cdots \geq m_n \geq 1; (\alpha \geq 1)$ $m = 1, \infty \leq 1$
- (iv) $|3m + \alpha + e; m + \alpha + e, m + e, m_3, ..., m_n|$ with $m e \ge m_3 \ge ... \ge m_{n-1} \ge 1, m > e > 0; (\alpha \ge 1)$
- (v) $|3m + \lfloor \frac{\alpha}{2} \rfloor$; $m_1, \ldots, m_n |$ with $m \geq m_1 \geq \cdots \geq m_n \geq 1$; $(\alpha \in \{2, 5\})$
- (vi) $|3m + \frac{\alpha}{2}; m 1 + \frac{\alpha}{2}, m_2, \dots, m_n|$ with $m \ge m_2 \dots \ge m_n \ge 1; (\alpha \ge 4 \text{ even})$
- (vii) $|3m + \frac{\alpha+1}{2} + e; m + \frac{\alpha-1}{2} + e, m + e + 1, m_3, \dots, m_n|$ with $m e \ge m_3 \ge \dots \ge m_n \ge 1$ and $m > e \ge 0; (\alpha \ge 3 \text{ odd})$

Proof of the classification assuming SHGH

Lemma

The Zariski decomposition of $|C + tK_n|$ effective (not nef) is

$$C + tK_n \sim P + A$$
, where $P \cdot A = 0$

- $A = \sum_{i=1}^{h} (t e_i) A_i, h \leq n$
- $ightharpoonup A_i$ are disjoint (-1)-curves; $e_i = C \cdot A_i$
- ▶ Let $f: X_n \to S$ be the contraction of A
 - $P = f^*(C_S + \hbar K_S)$
 - $ightharpoonup S\cong X_{n-h} \text{ or } [S\cong \mathbb{P}^1\times \mathbb{P}^1 \text{ and } h=n-1]$

Proof of main theorem assuming SHGH

- lt is enough to show that $\{(m(\mathcal{L}), \alpha(\mathcal{L}))\}$ finite for fixed g
- It is enough to consider bounded selfintersection (Explicitly: by Ciliberto–Dedieu–Mendes-Lopes, arxiv 2503.22299)
 - ▶ if $m(\mathcal{L}) \leq 2$ then finitely many possibilities
 - if $\mathcal{L}^2 > 3g 3$ then $m(\mathcal{L}) \leq 2$
- If $n \le 9$, $-K_n$ effective, $C \cdot K_n < 0$ gives $m(\mathcal{L}) \le 2g 1$, $\alpha(\mathcal{L}) \le 2g 2$ if $\mathcal{L}^2 \le 3g 3$
- If \mathcal{L} not Cremona transform of a system with ≤ 9 points use SHGH and $\mathcal{L}^2 \leq 3g-3$ to estimate dim $|C+tK_n|$ and show

$$m(\mathcal{L}) \leq g + 11 + \sqrt{(g+11)^2 - 4(g-1)}$$

 $\alpha(\mathcal{L}) \leq (m(f+2)(g-1) + 9m$
 $(m(f) - 2)(g-1) + 9m(f_-)$

Bounds on selfintersection assuming SHGH

Theorem

Assume $n \ge 10$, $g(\mathcal{L}) \ge 2$, $r = \dim(\mathcal{L}) \ge 0$.

- (a) If $|C + K_n|$ composed with a pencil, then |C| is Cremona equivalent to either
 - (i) $|6; 2^8, 1^{n-8}|, 8 \le n \le 11$ in which case g = 2 and $C^2 = 12 - n$;
 - (ii) $|g+2;g,1^{n-1}|, 1 \le n \le 3g+6$ in which case $C^2 = 4g - n + 5 = (n+4r)/3 - 2$
 - (iii) $|9; 3^8, 2^2|$, for which n = 10, r = 0, g = 2, and $C^2 = 1$.
- (b) If $g \ge 3$, n + r = 2h, and $|C + K_n|$ has irreducible general member, then $|C| \ge h + r 5$.
- (c) If $g \ge 3$, n+r = 2h+1, and $|C+K_n|$ has irreducible general member, then $C^2 \ge \lceil (6h-7)/5 \rceil + r 5$

Remark

If $C' \in |C + K_n|$ irreducible of genus g', then $C^2 = \frac{n+3r+g'}{2} - 5$.

Applications assuming SHGH, for given $n \ge 10$

- lacktriangle Explicit list of effective Cremona-minimal systems with $\mathcal{L}^2 \leq 5$
- Classification of minimal degree maps to the plane $(\dim \mathcal{L} = 2, \mathcal{L}^2 \text{ minimal})$
- For every dim $\mathcal{L} \geq 2$ the systems with minimal \mathcal{L}^2 are base point free
- For every dim $\mathcal{L} \geq 3$ the systems with minimal \mathcal{L}^2 determine birational morphisms
- We expect that for every dim $\mathcal{L} \geq 5$ the systems with minimal \mathcal{L}^2 linear systems on X_n are very ample. True for n=10.

Thank you! 4 D > 4 D > 4 E > E > 9 Q C

